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Abstract 

The belief that, for the individual patient, the benefit of prompt and continued use of antimicrobials outweighs any 
potential harm is a significant barrier to improved stewardship of these vital agents. Antimicrobial stewardship may 
be perceived as utilitarian rationing, seeking to preserve the availability of effective antimicrobials by limiting the 
development of resistance in a manner which could conflict with the immediate treatment of the patient in need. 
This view does not account for the growing evidence of antimicrobial-associated harm to individual patients. This 
review sets out the evidence for antimicrobial-associated harm and how this should be balanced with the need for 
prompt and appropriate therapy in infection. It describes the mechanisms by which antimicrobials may harm patients 
including: mitochondrial toxicity; immune cell toxicity; adverse drug reactions; selection of resistant organisms within 
a given patient; and disruption of the microbiome. Finally, the article indicates how the harms of antimicrobials may 
be mitigated and identifies areas for research and development in this field.
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Introduction

One of the major barriers to improved antimicrobial 
stewardship is the widespread belief amongst both medi-
cal professionals and the public that, for the individual 
patient, the benefits of prompt and continued use of 
antimicrobials outweigh any potential harm. Antimicro-
bial stewardship is sometimes perceived as the utilitar-
ian rationing of a vital resource, sacrificing the wellbeing 
of the present individual for a less immediate collective 
good. For the clinician, their principal duty to the patient 
in need outweighs this wider and more nebulous ben-
efit. This view is perhaps most pertinent to critically ill 

patients, who are the highest per-capita consumers of 
antimicrobials [1] and who are at greatest risk of harm 
from untreated or undertreated infection [2, 3].

However, there is growing evidence of the harm caused 
to individual patients by unnecessary or unduly pro-
longed antimicrobial use [4]. If consideration is given 
to potential harms in the individual patient, clinicians 
may be more judicious about antimicrobial prescrib-
ing. Several studies conducted within the intensive care 
unit (ICU) setting have provided compelling evidence 
that over-zealous use of antimicrobials can translate into 
adverse patient outcomes, including increased mortality 
[4–6].

This review sets out the evidence for antimicrobial-
associated harm, with a specific focus on the critically 
ill patient. It explores potential mechanisms underlying 
antimicrobial toxicity, including antimicrobial-induced 
cellular and mitochondrial toxicity, adverse drug reac-
tions, selection of resistant organisms at individual 
patient level and disruption of the microbiome. Finally, 
it discusses approaches to limit antimicrobial-associated 
harm and highlights research priorities.
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The evidence for antimicrobial‑associated harm
Initiation of antimicrobial therapy
Early initiation of antimicrobial therapy in bacterae-
mic septic shock on ICU admission is associated with a 
mortality benefit [3, 7, 8]. This led to the Surviving Sep-
sis Campaign guidelines emphasizing the importance of 
timely, empirical, broad spectrum antimicrobial ther-
apy [9]. However, the effect of the timing of initiation 
of antimicrobials in patients already in ICU is less clear 
cut, a large observational multi-centre study possibly 
suggested that adequacy of antimicrobial coverage may 
be more critical than time of initiation [10]. In clini-
cal practice, the Surviving Sepsis Campaign guidelines 
have sometimes resulted in the indiscriminate of empiri-
cal broad-spectrum antimicrobials in patients who have 
uncomplicated infections (an area where the evidence 
base is far less certain) and in those who have no bacte-
rial infection at all [11]. There is some evidence that sug-
gests that an early empiric approach may cause harm. A 
quasi-experimental, before and after cohort study [12], 
performed on patients suspected of having an infection 
on a single Surgical ICU, compared early antimicro-
bial administration based solely on clinical grounds to a 
more conservative strategy, based on waiting for micro-
biological evidence of infection. There was a significant 
all-cause mortality benefit among patients treated with 
the more conservative approach (odds of death ratio 2.5, 
95% CI 1.5–4.0), despite a median 10-h prolongation in 
time to antimicrobial therapy, suggesting inappropri-
ate antimicrobial therapy was associated with significant 
harm. This approach also appeared to translate into more 
appropriate antimicrobial choice and a shorter overall 
course duration.

However, it is important to note several caveats with 
these data. The data concerning initiation of antimicro-
bials in ICU comes from observational studies which are 
subject to inherent biases. For example, in observational 
studies there may be systematic differences between 
patients who received earlier and later antimicrobial 
therapy which were not measured and may influence the 
effects seen. Equally, Hranjec et  al.’s quasi-experimental 
study [12] occurred in a selected group of patients in a 
single ICU and may not be generalisable.

Although it is plausible that early initiation of appropri-
ate antimicrobials is beneficial in severe sepsis and septic 
shock, their over-zealous use in patients without infec-
tion is likely to lead to harm [13].

Although beyond the scope of this review, it should be 
emphasised that prompt source control can be vital in 
managing sepsis, improving the physiological status of 
the patient as well as providing samples for microbiologi-
cal investigation [8, 10, 14].

Duration of antimicrobial therapy
Arguably of greater concern for stewardship efforts in 
the ICU is the inappropriate continuation of antimicrobi-
als following initiation. The potential harms of this were 
illustrated in a randomised controlled trial (RCT) of inva-
sive versus non-invasive diagnostic strategies for ventila-
tor-associated pneumonia (VAP). Patients in the invasive 
group had significantly reduced antimicrobial exposure 
which was associated with reduced risk-adjusted mortal-
ity [15]. Subsequent studies of diagnostic technique did 
not result in significant reduction in antimicrobial use or 
mortality [16, 17], implying that it was the reduction in 
antimicrobials rather than the method of diagnosis that 
was the key factor. Similarly, in the largest RCT evaluat-
ing procalcitonin (PCT) guided cessation of antimicro-
bials, PCT-guided treatment was associated with lower 
overall antimicrobial use and mortality [4]. However, 
the association between shorter duration of antimicro-
bial use and mortality was not demonstrated by other, 
smaller, studies [18].

Broad‑spectrum antimicrobial combination
Another area where there is evidence that antimicrobi-
als cause harm is in the co-administration of agents. A 
prospective observational study evaluating the impact 
of American Thoracic Society/Infectious Diseases Soci-
ety of America guideline compliance in management 
of potentially resistant pneumonia demonstrated an 
excess mortality associated with guideline compliance 
[5]. The main reasons for non-compliance were non-
use of dual treatment for Gram negative pathogens and 
non-coverage for methicillin-resistant Staphylococcus 
aureus. This suggests that empirical, concomitant use 
of several antimicrobials is associated with an excess 
mortality risk compared to monotherapy [5].

Excessive prolongation
There is a growing body of evidence that antimicrobial 
course durations are excessive[19]. These have led to 
calls to abandon the concept of a defined ‘antimicrobial 
course’ and move to a more individualised approach 

Take‑home message 

Antimicrobial stewardship is sometimes perceived by frontline 
clinicians as the utilitarian rationing of a vital healthcare resource; 
sacrificing the wellbeing of the present individual for a less immedi-
ate collective good. This review sets out the evidence that antimi-
crobials can cause harm for the individual patient and proposes a 
research and quality improvement agenda to address this pressing 
but underacknowledged issue.
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to antimicrobial duration [20]. An RCT looking at the 
management of community acquired pneumonia (CAP) 
showed no significant difference in mortality between 
median antimicrobial treatment duration of 5 versus 
10  days. There was, however, a significant increase in 
readmission at 30 days in those treated for longer dura-
tions; Intriguingly this appears not to have been caused 
by CAP recurrence, which was similar between the two 
groups [21].

Several randomised trials have evaluated the duration 
of antimicrobials in ICU patients. Three studies includ-
ing patients with VAP [22–24] and one with undifferen-
tiated sepsis [25], demonstrated that shorter duration 
of antimicrobials was not associated with increased 
mortality risk. It should be noted that, in general, these 
trials were powered for non-inferiority, which may 
explain why many of them failed to identify any sig-
nificant reduction in antimicrobial-associated harm. 
De-escalation of antimicrobials, being the reduction in 
spectrum and duration of agents, has been assessed in 
a number of observational studies in intensive care and 
one RCT [26], which did not show a survival advan-
tage in de-escalation. However, this literature should 
give the intensivist confidence that in many cases the 

duration of antimicrobial courses can be safely short-
ened and de-escalated, thereby minimising the risk of 
adverse effects.

Mechanisms of anti‑microbial associated harm
Antimicrobials are able to harm patients by various 
mechanisms (Fig. 1).

Mechanism: drug toxicity
Antimicrobials are associated with a wide range of well-
recognised detrimental side effects including hepato-
toxicity, nephrotoxicity, and cytopaenias. The multiple 
pathophysiological mechanisms underlying these toxici-
ties is not completely understood. The common phylo-
genetic origin between mitochondria and bacteria [27] 
suggest that antimicrobials may directly affect human 
mitochondrial function and may contribute to the mito-
chondrial dysfunction and associated organ failure in 
sepsis.

Mechanism: mitochondrial dysfunction and organ 
dysfunction
Mitochondrial dysfunction is implicated in the patho-
physiology of organ dysfunction in sepsis [28], although 

Fig. 1 Summary of the mechanisms by which antimicrobials may harm patients
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the mechanisms are poorly understood. At clinically 
relevant doses, exposure to bactericidal antimicrobials 
results in mitochondrial dysfunction, reactive oxygen 
species (ROS) overproduction, reduced ATP, and oxi-
dative damage in mammalian cells ex  vivo [29]. Similar 
changes have been described in patients with sepsis[30, 
31]. The diverse mechanisms that underlie antimicrobial-
induced mitochondrial damage may provide insight into 
therapies that aim to mitigate toxicity (Fig. 2).

ROS production, antioxidant depletion, and associated 
oxidative damage in sepsis has been described in several 
clinical studies [32]. The mitochondrial electron trans-
port chain (ETC) is the major source of ROS production 
in non-immune cells [33]. A number of antimicrobials 
including ciprofloxacin and ampicillin inhibit ETC com-
plexes I and III [29]. This disrupts the flow of electrons 
through the ETC, allowing the leak of electrons into the 

matrix which react with oxygen to form superoxide [34]. 
Excessive ROS production can lead to irreversible pro-
tein nitration, DNA damage, perpetuation of mitochon-
drial dysfunction, and cellular dysfunction.

Beta-lactams and cephalosporins fit carriers for mito-
chondrial substrate uptake, causing reversible inhibition 
[35] and prolonged exposure to beta-lactams results in 
irreversible change due to acylation of the transport-
ers [35]. At high doses, several antimicrobials are able 
to inhibit mitochondrial oxidative phosphorylation [36]. 
The resulting impairment in substrate availability, ETC 
complex activity, and decreased ATP production may 
contribute to organ dysfunction in sepsis [30].

Recovery from sepsis is heralded by increased mito-
chondrial biogenesis [31]. Mitochondrial topoisomerase 
II is required for mtDNA replication and transcription; a 
key feature of mitochondrial biogenesis. This enzyme is 

Fig. 2 Antibiotics affect mitochondrial function by multiple mechanisms. Summary of findings from ex-vivo investigation. i Direct inhibition of 
mitochondrial complex (CI–CIV) activity results in the inability to maintain an electrochemical gradient. ii—iii The loss of mitochondrial membrane 
potential decreases the ability of the cell to generate ATP. Impaired Complex I and Complex III function result in leak of electrons from the ETC into 
the matrix, which then allows reaction with oxygen to form the superoxide free radical  (O2

−). iv Inability of Complex I to form ROS impairs NLRP3 
activation; whereas excessive mitochondrial ROS enhances NLRP3 inflammasome activity. In health, superoxide is reduced to hydrogen peroxide 
 (H2O2) by superoxide dismutase (SOD). The hydrogen peroxide is further reduced to water  (H2O) by catalase. v If excessive superoxide is produced, 
the anti-oxidant system is overwhelmed resulting in DNA oxidation and damage. vi Consequently, the ability of the cell to generate new mitochon-
dria (mitochondrial biogenesis) is impaired. vii Additionally, ciprofloxacin is able to inhibit DNA topoisomerase, thereby interfering with mitochon-
drial DNA replication. viii Beta-lactams fit carriers for mitochondrial substrate uptake, causing reduced succinate uptake. Succinate is converted to 
fumarate which itself has potent antibacterial effects. C I Complex I, C II Complex II, C III Complex III, C IV Complex IV, C V Complex V/ ATP synthase, 
Cyt C Cytochrome C, FAD Flavin adenine dinucleotide, FAD Flavin adenine dinucleotide, H2O2 hydrogen peroxide, Q Co-enzyme Q, NAD nicotinamide 
adenine dinucleotide, SOD superoxide dismutase, Ψ mitochondrial membrane potential
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susceptible to direct inhibition by antimicrobials includ-
ing ciprofloxacin, resulting in a loss of mtDNA [37]. Pro-
longed use of antimicrobials may, therefore, perpetuate 
organ dysfunction by impairing mitogenesis.

Therapeutic strategies to mitigate antimicrobial-
induced cellular dysfunction may be of benefit where pro-
longed courses of antimicrobials are required. Although 
mitochondrial-targeted anti-oxidants have demonstrated 
benefit in experimental sepsis [38], none have been used 
in clinical trials in septic patients. Clinical trials evaluat-
ing non-specific anti-oxidants have failed to demonstrate 
any clinical benefit [39], reflecting the complexity of the 
underlying pathology and the difficulty of targeting a 
mediator as ubiquitous and pluripotent as reactive oxy-
gen species.

Immune function and mitochondria
Many patients with sepsis develop immunoparalysis and 
are at increased risk of secondary infections [40]. Mito-
chondria are integral to regulating immune function, and 
defects in energy metabolism of leukocytes are associated 
with immunoparalysis in septic patients [41]. Although 
the adverse effects of antimicrobials on immune cell 
function have been known for decades [42], their spe-
cific impact on immunoparalysis in sepsis and critical 
illness is unknown. Mitochondria regulate wide-ranging 
functional responses in innate and adaptive immune cells 
which may be altered by antimicrobials (Fig. 2).

As an example, electron transport chain adaptations 
serve as an early immunological-metabolic checkpoint 
that adjust innate immune responses to bacterial infec-
tion [43]. Increased mitochondrial complex II conver-
sion of succinate to fumarate is required for macrophage 
phagocytic activity. Beta-lactams and cephalosporins 
fit carriers for mitochondrial substrate uptake [35] and 
may limit the activity of Complex II. The highly energy-
dependent respiratory burst required for bacterial killing 
by macrophages is impaired by ciprofloxacin through a 
dose-dependent inhibition of mitochondrial respiratory 
activity [44].

Whilst excessive ROS may be detrimental, mitochon-
drial ROS has important signalling roles in immune 
homeostasis. Cytosolic oxidized mtDNA associates with 
the NLRP3 inflammasome complex and is required for 
its activation after the engagement of Toll-like receptors 
[45]. Inhibition of mitochondrial complex I-induced- 
ROS impairs NLRP3 inflammasome activity [46], and 
impaired monocyte NLRP3 activity is associated with 
mitochondrial dysfunction and increased risk of death in 
sepsis [47].

The effect of antimicrobials on immune system func-
tion are, however, complex, and observations from 
ex vivo experiments may not always translate to in vivo 

function. Therefore, whilst the hypothesis that antimicro-
bials are key drivers of immune cell dysfunction in sepsis 
and other critical illness syndromes is plausible and sup-
ported by mechanistic data, it requires further investiga-
tion at a whole organism and patient level.

Mechanism: adverse drug reactions
Commonly encountered manifestations of antimicrobial 
harm are the various forms of adverse drug reactions that 
they can provoke. These can be broadly divided into ‘dose 
dependent’ or predictable reactions, and ‘immunologi-
cal’ or idiosyncratic reactions. The topic of adverse drug 
reactions to antimicrobials in intensive care has been 
reviewed in depth [48], and will be briefly summarised 
below.

Dose-dependent reactions result from pharmacody-
namic interactions between antimicrobials and mam-
malian cells. Aminoglycosides, glycopeptides, and 
polymixins have dose-dependent risks of nephrotoxic-
ity, and these agents are amongst those most commonly 
managed with therapeutic drug monitoring (TDM) 
as a result [49]. Routine TDM is seldom employed for 
other antimicrobial classes, although they too can have 
organ-specific reactions such as beta-lactam and mac-
rolide-induced neurotoxicities [50]. Fluoroquinolones 
and macrolides lead to cardiac dysrhythmias through 
interaction with the rapidly activating delayed rectifier 
potassium channel (IKr) [51]. Fluoroquinolones are also 
associated with collagen-toxicity which leads to aor-
tic aneurysms and tendinopathy, whilst bone marrow 
suppression is seen with co-trimoxazole and linezolid. 
Beyond direct drug toxicity, antimicrobials may alter the 
plasma levels of other drugs through effects on plasma 
protein binding or impact on the cytochrome P450 
metabolism system. These adverse drug reactions are 
frequently missed in critically ill patients as they may be 
misinterpreted as part of the underlying disease process.

Antimicrobials are common triggers of Immune-medi-
ated idiosyncratic reactions such as anaphylaxis [52]. 
Beyond type I (anaphylactic) reactions, there are a range 
of other idiosyncratic immune responses that range from 
mild eosinophilic drug rash to the severe cutaneous 
adverse reactions (including Toxic Epidermal Necrolysis 
and Stevens-Johnson syndrome). Within this spectrum 
there are also a variety of systemic and organ-specific 
reactions such as serum sickness, hypersensitivity vas-
culitis, angioedema, acute interstitial nephritis [53]. 
There is a growing recognition that some of these reac-
tions are not simple immune system-drug interactions, 
but also involve interactions with viral pathogens. Exam-
ples include the rash observed with penicillin treatment 
in Epstein-Barr Virus infection and the role of Human 
Herpes Viruses 6/7 in drug rash with eosinophilia and 
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systemic symptoms (DRESS) syndrome [54]. Again, these 
reactions can, at times, be difficult to distinguish from 
the underlying disease process.

Conversely, there is an increasing focus on the prob-
lem of the documentation of antimicrobial allergy. Rates 
of reported penicillin allergy far outstrip rates of actual 
allergy on skin prick testing [55]. This can result in anti-
microbial choices with unnecessarily broad spectrum or 
adverse toxicity profiles, increasing the risk of antimicro-
bial-induced harm.

Mechanism: antimicrobial resistance
The most widely recognised mechanism of antimicro-
bial-associated harm is the emergence of antimicrobial 
resistance (AMR). Whilst the global threat of AMR is 
now widely acknowledged [56, 57], what has received less 
attention is the role of antimicrobial therapy in develop-
ing subsequent multi-drug resistant (MDR) infections in 
the patients receiving those antimicrobials.

Infections caused by MDR pathogens are associated 
with increased mortality and length of stay [58]. They 
are more likely to be resistant to commonly prescribed 
empirical antimicrobials and thus introduce delays to 
appropriate, effective therapy. They also often neces-
sitate treatment with antimicrobials that have inferior 
bactericidal activity and undesirable pharmacological 
properties/toxicities, as seen in the comparison between 
beta-lactam and glycopeptide therapy for S. aureus 
infection [59]. MDR pathogens are common causes of 
ICU-acquired infection with one European estimate 
suggesting that more than two-thirds of cases of ICU-
acquired bacteraemia are caused by MDR bacteria [60].

Common MDR bacteria encountered in Intensive 
Care are linked to the antimicrobials used in critically ill 
patients. Examples include Gram positive organisms such 
as methicillin resistant S. aureus (MRSA) and vancomy-
cin resistant enterococci (VRE) the prevalence of which 
appears to have been relatively stable [61]. Conversely, 
rates of MDR Gram negative bacteria (e.g. Carbapenem-
resistant Pseudomonas aeruginosa, Acinetobacter bau-
mannii and Carbapenem-resistant/extended spectrum 
beta-lactamase (ESBL) producing Enterobacterales) 
appear to be rising [62].

Patients in ICU are particularly susceptible to acquir-
ing MDR organisms, either as pathogens or colonisers. 
One of the causes is the large antimicrobial burden criti-
cal care patients are exposed to prior and during their 
ICU stay. Case–control studies examining risk factors 
for isolating Carbapenemase-resistant Enterobacterales 
(CRE) found recent antimicrobial administration, and 
carbapenems specifically, to be the largest risk factor [63, 
64]. Likewise a recent meta-analysis, specifically look-
ing at the risk factors for MDR Gram negative bacteria 

infection in ICUs, found previous antimicrobial therapy 
to be key [65].

Respiratory tract infections and VAP [1] account for 
the majority of hospital-acquired infections. An obser-
vational cohort study in suspected VAP and a RCT in 
microbiologically proven VAP have shown a significant 
increase in subsequent MDR-related superinfection in 
patients treated with longer duration of antimicrobial 
therapy [23, 66]. Crucially neither study showed a mor-
tality benefit with longer antimicrobial use.

It is established that the oropharynx of ventilated 
patients become colonised with multi-resistant bacteria 
within a few days of ICU admission [67] and that this is 
related to antimicrobial use [67]. What is also increas-
ingly being appreciated is that exposure to antimicrobials 
can lead to colonisation/infection with pathogens resist-
ant to not only the same class, but also different classes 
of antimicrobials. A study looking at the development 
of piperacillin-resistant P. aeruginosa VAP showed an 
association with prior fluoroquinolone treatment [68]. 
This likely underscores the complex selection pressures 
driven by antimicrobial therapy on the host microbiome, 
and how antimicrobial-associated dysbiosis (see below) 
relates to the selection of MDR organisms. A study per-
formed in two ICUs in the Netherlands, utilizing mathe-
matical modelling, suggested that the predominant route 
of acquisition of MDR Enterobacterales was endogenous 
(i.e. from selection pressure applied to the patient’s own 
gut microbiome), rather than by exogenous cross-con-
tamination (i.e. from other patients, healthcare workers 
or the environment) [69]. This suggests that infection 
control/hand hygiene precautions, that have been very 
effective at reducing rates of MRSA infection [70], may 
not be as effective in preventing MDR Gram negative 
infections and that antimicrobial therapy may well be a 
driver of MDR Gram-negative colonisation in the indi-
vidual patient.

Mechanism: disruption of the microbiome
When an imbalance of commensal and pathogenic bac-
teria occurs in a microbiome, known as dysbiosis, the 
risk increases for local and systemic disease including 
healthcare-acquired infection (HAI) and associated com-
plications [69, 71]. Not only can alteration of the micro-
biome and dysbiosis increase risk of infection, it also has 
the potential to contribute to increase of antimicrobial 
resistance genes and become a source for MDR organ-
isms such as the ESKAPE organisms [72, 73]. ESKAPE 
pathogens (Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, and 
Enterobacter species) are of worldwide concern as major 
causes of HAI and can cause life-threatening infections 
in critical care patients [74]. The impact of dysbiosis 
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extends beyond overgrowth of pathogenic organisms, 
and a loss of diversity can upset the metabolic symbio-
sis between the host and its microbiome which may drive 
inflammation and organ dysfunction directly [75].

Critical illness results in changes to the human micro-
biome and dysbiosis [72, 76]. A decrease in diversity 
and commensal organisms, with a concomitant increase 
in potential pathogens, has been described for the skin, 
oral, respiratory, and gastrointestinal microbiota of ICU 
patients [76–78]. In mechanically ventilated patients, 
a decrease in the diversity of the lung microbiome and 
increase in the abundance of potential pathogens such as 
staphylococci and Pseudomonas spp. has been reported 
[77]. Greater lung dysbiosis was demonstrated in patients 
with VAP compared to ventilated patients without VAP 
[79]. Despite inter-individual variation in the gut micro-
biome, marked reductions in bacterial diversity have been 
described in septic and non-septic critically ill patients 
[80]. Prolonged ICU admission has also been associated 

with low gut microbiome diversity and presence of MDR 
organisms [72]. Whilst the process of critical illness itself 
contributes to gut microbiome disruption, the frequent 
use of antimicrobials in ICU can further adversely impact 
gut microbiome diversity [72, 81]. The high frequency of 
antimicrobial administration in ICU, makes it challeng-
ing to disentangle these processes in human illness [76, 
82] although animal models do imply both play a major 
role [83].

Impact of antimicrobials on the microbiome
Significant loss of gut microbiome diversity has been 
observed in intensive care patients following the use of 
broad spectrum antimicrobials such as meropenem [84]. 
In a study currently being conducted at the ICU of the 
Royal Brisbane Hospital, Australia, similar findings are 
observed using shotgun metagenomics. In one particu-
lar patient, admitted with burns, classified Candida albi-
cans reads increases to nearly 30% relative abundance 

Fig. 3 Analysis of relative abundance changes prior to (sample A) and following broad spectrum antimicrobials (sample B), demonstrating an 
increase in Ascomycota, all of which identified as C. albicans, using One Codex (https ://oneco dex.com/) [92]

https://onecodex.com/
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following the receipt of antimicrobials including mero-
penem. Figure 3 illustrates the significant increase of C. 
albicans in this patient following broad-spectrum antimi-
crobials (Schlebusch S. pers comm). This finding is con-
sistent with observations by Ravi and colleagues [84]. C. 
albicans is recognised as a serious concern in critically 
ill patients and colonization with Candida predisposes 
for invasive Candida infections in intensive care patients 
[85].

In 75% of long-stay ICU patients, most of whom 
received antimicrobials [84], Ravi and colleagues further 
describe increases in the relative abundance of ESKAPE 
pathogens such as E. faecium, K.pneumoniae, and E. 
cloacae, illustrating the selective effect of antimicrobial 
therapy on resistant microbial populations. In this study 
23 of 24 patients received antimicrobials, with merope-
nem especially being associated with increased abun-
dance of pathogens and loss of putative beneficial species 
such as Faecalibacterium prauznetzii and Akkermansia 
muciniphila [84].

Although it is clear that dysbiosis occurs amongst 
critically ill patients, and that antimicrobials are a major 
driver of this, it is less clear how this impacts patient 
outcomes as we do not currently have effective inter-
ventions to modify the microbiome. However, there is 
considerable plausibility from animal models, where 
antimicrobial-induced dysbiosis worsens spinal cord 
injury [86], increases the risk of pseudomonal lung infec-
tion by affecting mucosal IgA levels [87], and impairs the 
immune response to Influenza A [88]. In terms of human 
disease, perhaps the clearest example of a disease arising 
from dysbiosis is Clostridium difficile-associated diar-
rhoea (CDAD). Whilst the association between anti-
microbial exposure and CDAD is long established, the 
realisation that this was not simply selection of a resistant 
organism has come more recently [89]. The role of dysbi-
osis in CDAD is underlined by the impressive response to 
faecal microbial transplant [90] and its ability to restore 
gut microbiota [91].

Reducing harm: the research agenda
What remains to be elucidated is how to mitigate against 
these harms given the centrality played by antimicrobials 
in the treatment of infections. Antimicrobial stewardship 
programmes to reduce the use of antimicrobials in non-
bacterial infections and non-infectious conditions reduce 
harm by reducing exposure [93], whilst efforts to shorten 
courses avoid unnecessarily broad-spectrum or multi-
ple agents may also be expected to reduce harm. In this 
area, the domain of healthcare improvement science, we 
believe that research efforts should focus on determin-
ing the optimal components of antimicrobial stewardship 
programmes and how to drive behaviour change [94].

Secondary infections are common amongst patients in 
intensive care [40] and efforts to reduce these through 
prevention programmes can have a significant impact 
on antimicrobial use [95]. Molecular diagnostic tech-
niques allow more rapid and sensitive testing for infect-
ing organisms [96], whilst host-focussed diagnostics can 
identify patients with infection as opposed to coloniza-
tion [94]. However, the impact of these tests on antimi-
crobial prescribing is not clearly established and should 
be a focus for future research. The heightened sensitiv-
ity of pathogen-focussed tests especially may inappro-
priately increase the use of antimicrobials. Limiting 
this inappropriate increase will require distinguishing 
between invasive infection and benign colonisation and 
may require the combination of both host and pathogen-
focussed tests.

The use of gut microbiome testing for monitoring 
and guiding antimicrobial choice is promising; however, 
although direct to consumer testing is available, accred-
ited clinical testing remains elusive [97]. Further research 
underpinning the clinical validation of gut microbiome 
testing to progress clinical accreditation of testing is 
much needed.

A recent meta-analysis of pro-biotics in intensive care 
patients suggested that administration of these organ-
isms to either the oropharynx or GI tract could reduce 
development of VAP [98]; however, this approach has not 
yet found widespread acceptance [99]. Further work in 
this area would provide vital testing of the mechanistic 
hypothesis that dysbiosis plays a causative role in adverse 
outcomes in our patients. However, a note of caution is 
sounded by reports of both faecal microbiota transplant 
and probiotic therapy being implicated in bacteraemia 
[100, 101].

Even with improved stewardship and diagnostics, 
patients with infections will continue to require antimi-
crobial therapy, and often resistance patterns will demand 
the use of broad-spectrum agents with adverse toxicity 
profiles. We do not know if there are ways of preventing 
the immuno-suppressive and metabolic side effects of 
mitochondrial impairment, and similarly beyond avoid-
ing excessive dosing there is limited evidence on how to 
prevent direct organ toxicity. The development of mito-
protective strategies which may counteract the mito-
chondrial toxicity of antimicrobials are of urgent need. 
This should be combined with further mechanistic stud-
ies on the effects of antimicrobials on immune and solid-
organ tissues, which may lead to targeted mito-protective 
strategies. The successful development of such agents 
would open up an entirely novel branch of therapeutics.

Ultimately, mitigation of antimicrobial-associated 
harm is likely to require a multi-faceted approach, com-
bining many or all the approaches discussed above which 
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will need to be both individually proven and then imple-
mented in a bundle of proven interventions.

Summary and conclusions
In conclusion, there is evidence that reducing antimicro-
bial use in critical care can have a direct impact on indi-
vidual patients, reducing mortality. The mechanisms by 
which antimicrobials may worsen outcomes are varied, 
ranging from direct drug toxicity to dysbiosis, immune 
cell dysfunction to idiosyncratic drug reactions. Mitiga-
tion of these will require a multi-faceted approach. How-
ever, the first step in dealing with the problem posed by 
antimicrobial-associated harm is widespread acknowl-
edgement of this issue. We need to develop an under-
standing that antimicrobial stewardship is about more 
than simply attempting to limit the development of 
microbial resistance and undertake research and quality 
improvement focusing on understanding and mitigating 
the serious adverse effects of these vital drugs.
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